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P A R A M E T R I C  A N A L Y S I S  OF  T W O - P H A S E  F L O W  I N S T A B I L I T Y  

IN A C H A N N E L  W I T H  I N L E T  A N D  O U T L E T  H Y D R A U L I C  R E S I S T A N C E S  

A. B. Shigarov UDC 621.45 

The mechanism of low-frequency self-oscillating instability of a one-dimensional two-phase flow 
in a channel with inlet and outlet hydraulic resistances is considered. The mechanism is based 
on the sensitivity of the inlet flow rate of the liquid to the pressure variation inside the channel 
and the sensitivity of the pressure to the variation of the outlet gas flow rate (with a constant 
mass rate of the liquid-gas phase transition per unit volume). A spectral analysis of the stability 
of the steady solution of the boundary-value problem for a hyperbolic-type nonlinear system 
of equations is performed within the framework of a two-velocity model of a gas-liquid flow. 
Parametric boundaries of the region of instability are obtained. The existence of self-oscillations 
in this range of parameters is supported by a numerical solution of the unsteady boundary-value 
problem. 

In various fields of engineering, use is made of devices whose principle of operation consists in that a 
liquid continuously flows to the inlet and complete liquid-to-gas conversion occurs inside the device. The gas 
is withdrawn from it via hydraulic resistance, which maintains the necessary pressure level inside the device 
or accelerates the gas flow to create a jet thrust. This can be illustrated by liquid jet engines and catalytic 
gas generators of aerospace systems and by tubular vapor generators for boilers and chemical reactors. 

The instability of the stationary mode of operation in some ranges of the parameters, which causes 
periodic variations of the pressure, gas flow rate at the outlet, liquid flow rate at the inlet, and dimensions 
of the two-phase zone is an interesting phenomenon characteristic of the operation of such devices, but this 
phevomenon is extremely undesirable in practice. 

Although the technical devices (tubes, reactors with a granular catalyst layer, and combustion 
chambers) and the physicochemical processes (evaporation, combustion, and catalytic decomposition of 
liquids) occurring in them are different, it is assumed that common mechanisms of instability exist for a 
certain class of observed oscillations. One can study the onset of such oscillations within the framework of a 
rather general mathematical model. 

In the present paper, we consider a mechanism of instability that is based on (1) strong sensitivity of 
the inlet liquid flow rate to the pressure variation inside the device, (2) strong sensitivity of the pressure to 
the variation of the outlet gas flow rate, and (3) a constant mass rate of the liquid-gas phase transition per 
unit volume. The period of oscillations is much longer than the time of propagation of acoustic waves, i.e., 
pressure oscillations occur almost in the same phase throughout the volume, thus playing the role of negative 
feedback for an oscillatory system. It is important here that the variation in the outlet gas flow rate delays in 
time relative to the variation in the liquid flow rate at the inlet of the device. 

A similar mechanism of oscillations is considered in the theory of the instability of liquid-propellant 
rocket engines for low-frequency oscillations [1]. Results of a parametric analysis of the instability were 
obtained using a mathematical model based on the hypothesis of a stepwise burning curve. According to this 
hypothesis, for all particles in the chamber there is a delay time during which the liquid remains unchanged. 
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and after this period ends, the liquid instantaneously becomes a gas. An advantage of this model is the fact that 
mathematical  analysis is simple and physical understanding of the instability mechanism is straightforward. 
However, this idealization is too strong for studying the operation of concrete devices and it is necessary to 
introduce characteristics of a two-phase flow. 

In the l i terature on the dynamics of vapor-liquid flows in heated channels [2], the manifestation of 
a similar instability mechanism is called density-wave oscillations, which are usually analyzed within the 
framework of a one-dimensional model of a two-phase flow, with hydraulic resistance concentrated at the 
channel's inlet and outlet.  However, spectral stability analysis is performed under the assumption that  the 
gas-phase density is constant,  i.e., the density of the two-phase mixture is determined only by the volumetric 
gas fraction. Such an approximate  method of instability analysis leads to larger errors the larger the volumetric 
gas fraction in the  flow, and it is not applicable at all if there is a purely gas-phase flow segment in the channel, 
which exerts a marked effect on the pressure dynamics. The  latter case is characteristic of reactors for catalytic 
gas generation. 

Stegasov et al. [3] considered the problem of the onset of this type of instability within the framework 
of a one-dimensional model  of a two-phase flow with allowance for the compressibility of the gas phase 
and the presence of a gas-phase flow segment. The results obtained were, however, l imited to the case of a 
pseudohomogeneous model  of a two-phase flow (equality of the liquid and gas velocities). 

In the present paper,  we analyze a two-velocity model of a gas-liquid flow in which the liquid velocity 
changes simultaneously throughout  the channel, depending on the inlet velocity. Here the liquid can be 
regarded as a solid jet  with a transverse cross section decreasing along the length owing to the phase transition. 
This idealization allows one to perform an exact spectral analysis of the stability of the steady solution of 
the boundary-value problem for a hyperbolic-type nonlinear system of equations within the framework of the 
two-velocity model  of a gas-liquid flow. 

F o r m u l a t i o n  o f  t h e  P r o b l e m .  The mathematical  model of a one-dimensional gas-liquid flow in a 
channel includes the equations (0 < z < L and t > 0) 

Op OG 
0-7 + =0;  

0 0 
0--~ (Pliquia~) -[- ~z  (Pliquid~Uliquid) = - W  for ~ > O; 

OUliquid = O; 
Oz 
OP 
az = 0; 

P 
= C = const; 

pgas 

and the boundary conditions 

P = ~Pliquid + (1 -- ~)pgas, Pliquid = const; 

G = ~PliquidUliquid + (1 -- ~)PgasUgas 

z = 0: /~ = 1; 

z = 0: G = r  

z = L: G = @(P). 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
(7) 

(S) 

(9) 

Here L is the length of the channel (in meters); z and t are the coordinates in length (in meters) and time 
(in seconds), p, Pliquid, and pg~ are. the densities of the two-phase mixture, liquid, and gas, respectively (in 
kg/mS), G is the mass flow rate of the two-phase mixture per unit  cross-sectional area of the channel (in 
kg /m 2.sec), ~ is the volume fraction of the liquid in the mixture,  Uliquid and ugas are the liquid and gas 
velocities, respectively (in m/sec) ,  W is the mass rate of the liquid-gas phase transition per unit volume of 
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the channel (in kg/sec, m3), P is the pressure (in N/m2), C is a constant that characterizes the composition 
and temperature of the gas (in m2/sec2), and r and # are functions that characterize the hydraulic conditions 
for introduction of the liquid into the channel and for withdrawal of the gas from the channel. 

The rate of the liquid-gas phase transition per unit volume is constant. The length of the two-phase zone 
is smaller than the length of the channel, and a purely gas-phase flow exists beyond this zone. Pressure and gas 
velocity perturbations propagate instantaneously along the length. The liquid velocity changes simultaneously 
throughout the length of the channel. By virtue of these assumptions, the law of conservation of momentum 
for the liquid and the gas reduces to (3) and (4). The liquid density and the composition and temperature of 
the gas are constant, and the gas is ideal, (5)-(7). The liquid arrives at the channel inlet, (8), and its flow 
rate depends on the pressure, (9). The gas, whose flow rate also depends on the pressure, (10), flows out at 
the outlet. 

S teady  Solut ion.  We assume that the function r  decreases monotonically and the function q(P)  
increases monotonically in accordance with the physical meaning. This means that as the pressure grows in 
the channel, the inlet flow rate of the liquid decreases, while the outlet flow rate of the gas increases, and 
the inlet and outlet hydraulic conditions (9) and (10) uniquely determine the stationary flow rate Gs and 
pressure Ps: 

(I)(Ps) = q(Ps) = G,. 

Here and below, the subscript s denotes the corresponding stationary quantity. 
Equation (2) with boundary condition (8) reduces to the following steady equation: 

d/ss 
as dz = - W '  z E [0,L], /5,(0) = 1, (11) 

which determines the unique steady solution of problem (1)-(10): 

f 1 - zW/Gs,  if z E [0,/,liquid,s], /ss(Z) 
O, if z E [Lliq.id,s, L], 

Gs Ps Gs 
Uliquid ,s  = P l iqu id  Pgas,s = - ~ ' ,  ttgas,s = pgas,s 

Lliquid,, = Gs/W, 
Lgaa,a = L - Lliquid,a, 

p s ( Z )  = /ssPl iqt t id  "a t- (1 - B s ) p g ~ , s ,  
(12) 

where Lliquid,s and Lgas,s are the stationary lengths of the two-phase and gas-phase zones of the channel. 
Analysis  of t he  S tabi l i ty  of a S teady Solut ion in a Linear  Approx imat ion .  By virtue of 

conditions (5) and (6), the equality 

O p 0/5 1 - / 5  d P P 0/5 t' P'~ 0/5 1 - / 5  d P 
0-7 = Pliquid ~ "  + ~ dt C Ot - ~Pliquid -- C )  ~ "  + - - ~  d~- 

is fulfilled, and we can eliminate the variable p from Eq. (1): 

Pliquid - -  "~ + C dt + ~ z  = 0. (13) 

Using conditions (3) and (5), we reduce Eq. (2) to the form 

(9/5 (9/5 -W.  (14) 
-37 + G(0, t) (9-7 = 

For the gas-phase zone, which is formed after the liquid disappears, instead of (13) and (14) it is sufficient to 
use one equation derived from (1) with allowance for (5) and (6) for/5 = 0: 

1 dP (gG 
d---[ + ~ z  = 0. (15) 

We linearize Eqs. (13)-(15) with respect to small perturbations of the steady solution by making the 
substitution 

/3(z, t) = ~s(z) +/3"(z, t), G(z, t) = Gs + G"(z,t),  P(t) = Ps + P"(t) 

and leaving, in the derived equations, terms that are linear with respect to the perturbations/3", G", and P". 
As a result, we obtain a system of two equations for the two-phase zone of the channel (0 < z < Lliquid,s and 
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t > 0): 
0/3" (1 - /3s)  dP" OG" 

(Pliquid -- Pgas,s) ~ + T d----~ "1- O"-'z" = O; (16) 

o#" o#" d#~ 
p~q.~d ~ + G. ~ + G"(O. 0 ~ = 0 (17) 

and one equation for the gas-phase zone of the channel (Lliquid,s < z < L and t > 0): 

1 dP" OG" 
d--T + T ~  = O. (18) 

We add the linearized boundary conditions (8)-(10) to this system: 

z = 0: /3" = 0; (19) 

z = 0: G" d e  = ~ (P , )P" ;  (20) 

z = L: G" d ~  = - ~  (P , )P" .  (21) 

We transform the term G"(0, t) in Eq. (17) using condition (20) and subst i tute  the relation for the 
stationary profile of the volume fraction of the liquid (12) into Eq. (16). After this, we reduce system (16)-(21) 

,, p, #, #,, to dimensionless form by using the stationary quantities G' = G / G s ,  = P " / P , ,  and = as the units of 
the scale of independent  variables and using the length of the two-phase zone and the t ime of the presence of 
the liquid in this zone (for a steady solution) z' = z/Lliquid,a and t' = t/Tliquid,s , where Lliquid,s = G s / W s  and 
Tliquid,, = Lliquid,s/Uliquid.s = Pliquid/W, as the units of the scale of length and time, respectively. As a result, 
we write the linear homogeneous system of partial differential equations for dimensionless perturbations of 
the steady solution for t' > 0: 

(1 - e )  0/3' dP' OG' z' ~ -  + ez' -~-  + ~ = 0, e [0, ll; (22) 

0#' 0#' z' 
at' + ~z '  + hoP' = 0, e [0, i]; (23) 

dP'  OG' 
e -~7- + ~-Tp = 0, z' E [1,1 +d] .  (24) 

The boundary conditions are as follows: 
z' = 0: #' = 0; (25) 

t G I z = 0: = - h o P ' ;  (26) 

i G I z = 1 + d: = h iP ' .  (27) 

System (22)-(27) includes four nonnegative constant dimensionless variables: 

-dO. Ps d~  Ps 
e - Ps=,.._____~* d = Lv'~'s ho = "-d'if" (Ps) "~s' hx = - ~  (Ps) -~,.  (28) 

Pfiquid ' Lliquid,s ' 

We shall perform a stability analysis of the zero steady solution of problem (22)-(27) by making the 
following substitution: ~'(z ' , t ' )  = /3*(z') exp (At'), G'(z ' , t ' )  = G*(z') exp (At'), and P'( t ' )  = P* exp (At'), 
where all the quantities, except for z' and t', are considered in the complex plane, the vector function (/3", G*, 
P*) of the variable z is the eigenfunction for problem (22)-(27), and the parameter  A is the eigenvalue (the 
spectral point). Finally, we obtain the spectral problem that  consists in finding A for which there are nonzero 
solutions/3*(z), G*(z), P* of the system 

dG* 
+ (1 - e)A/3* + eAz'P* = O, z' e [0, 1]; (29) 

dz' 

dE* z' 
dz---- i- + .kO* + hoP* = O, E [0, 1]; (30) 

4-t 



dG* 
dz--- i- + cAP* = O, z' E [1, 1 + d]. (31) 

The boundary conditions are of the form 
i /3" z = 0: = 0; (32) 

t G* z = 0: = - h o P * ;  (33) 

' G* z = 1 + d: = hxP*. (34) 

We integrate Eq. (30) for the two-phase zone over the length of this zone with the initial condition (32), 
regarding A and P* as the desired parameters: 

I 
Z 

13*(z') = - f hoP* exp (A(z - z')) dz = hoP" - 1 (35) 
exp(-Az ' )  

A 
0 

With allowance for the dependence (35), Eq. (29) reduces to the form 

dG* 
dz' = -[(1 - e)h0(exp(-Az')  - 1) + eAz']P* = 0. (36) 

Integrating Eq. (36) with the initial condition (33) over the length of the two-phase zone, we obtain 

G * ( 1 ) = - h o P * + ( 1 - e ) h o (  e x p ( - A ) - I  ) cAP* A + 1 P* (37) 2 

Integrating Eq. (31) over the length of the gas-phase zone, we write 

G*(1 + d) = C*(1) - edAP*. (38) 

Having subst i tuted (37) into (38), we have an equation that  relates the variables G* and P* at the channel 
outlet: 

G*(1 + d) = - h o e *  + (1 - e)ho "-'~exp(--~-") - 1 + 1)P*" - sAP*(1/2 + d). (39) 

Since condition (34) must  be satisfied at the channel's outlet,  the problem of the existence of nonzero solutions 
of problem (29)-(34) reduces to the condition of vanishing of the determinant of the system of two linear 
homogeneous equations (3,4) and (39) in the unknowns P* and G*(1 + d): 

F = hl + ho - ( 1 -  e)ho ( e X p ( 7 )  - l + l )  + eA(ll2 + d) = O. (40) 

Thus, we have derived the (complex) spectral equation (40) of the form F(,k) = 0, the existence of 
at least one root A of which in the right-hand half of the complex plane indicates instability of the steady 
solution of the initial system (1)-(10) in the linear approximation. Equation (40) includes four dimensionless 
parameters h0, hi,  e, and d that  affect the stability in the general case. 

P a r a b o l i c  A n a l y s i s  o f  I n s t a b i l i t y  Reg ions .  A numerical analysis by the method [3] of location 
of spectral points, i.e., the roots A of Eq. (40) on the complex plane, shows that  there are certain regions 
of the parameters h0, hi,  e, and d for which a pair of complex-conjugate numbers A = r 4- iw is positioned 
in the right-hand half of the complex plane (r > 0), which means instability of the steady solution in the 
linear approximation. Numerical integration of the nonlinear boundary-value problem (1)-(10) by the fitting 
method [4] shows that  in these ranges of the parameters an arbitrary perturbat ion of the steady solution 
lead3 to establishment of self-oscillations of constant frequency and constant amplitude.  Figure 1 shows the 
variation of the dimensionless liquid flow rate G' at the entrance to the channel and of the dimensionless gas 
flow rate at the exit from the channel (curves 1 and 2, respectively), in relation to the dimensionless time t' 
for E = 0.02, hi = 1, h0 = 6, and d = 10. The oscillation ampli tude tends smoothly to zero in approach to 
the parametric stability boundary, i.e., one can speak of smooth excitation of oscillations. 

We shall clarify the physical meaning of the parameters h0 and hi in a number  of particular cases. If 
the arrival of the liquid at the channel inlet is described by the law G = r = ((P0 - P)/ko) 1/2, where 
k0 is the coefficient of inlet hydraulic resistance and /9o is the constant pressure before the entrance to the 
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channel, then, by definition (28), h0 = (2APo/Ps) -1, where APo = Po - Ps, i.e., the parameter h0 is inversely 
proportional to the doubled stationary pressure difference at the inlet to the channel AP0. For subcritical gas 
outflow from the channel outlet, we have G = ~(P)  = ((P - P1)/kl) I/2, where kl is the coefficient of outlet 
hydraulic resistance and P1 is the constant pressure after the gas leaves the channel, and, by definition (28), 
hi = (2AP1/Ps) - I ,  where API = Ps - P1, i.e., the parameter hi is inversely proportional to the doubled 
stationary pressure difference at the exit from the channel AP1. For critical gas outflow at the outlet, we have 
G = k~(P) = P /k l ,  and hence hi = 1. 

Figure 2 shows the boundaries of the instability regions in the plane of parameters (d, h0) for hi = 1 
and e = 0.01, 0.02, and 0.03 (curves 1-3), the instability regions being located above the boundaries. The 
boundaries correspond to the case where the right pair of complex-conjugate roots of the spectral equation 
(40) is on the imaginary axis. Instability always arises at a rather large value of h0 (a small pressure difference 
at the channel outlet). For a given ratio of the phase densities, for example, e = 0.02, there is a critical 
level of the parameter h0 = 5 below which oscillations do not occur for h0 < 5. Slightly above this level at 
h0 > 5 oscillations appear for the ratio d = 15 between the lengths of the gas-phase and two-phase zones of 
the channel. Upon further increase in h0, for example, for h0 = 6, the instability interval in the parameter 
d expands (8 < d < 30). In the general case the instability corresponds to a fairly large, or, conversely, to a 
fairly small, value of d. For example, when the length of the two-phase zone is equal to the channel length 
(d = 0), the steady solution is stable, independently of the value of h0 and e. We note that the extension of the 
stability region relative to h0 with a large increase in the parameter d corresponds to the results of an analysis 
of a single-velocity (pseudohomogeneous) model of a two-phase flow [3]. At the same time, the extension of the 
stability region relative to h0 with a large increase in the parameter d is unexpected at first sight. Probably, 
this is explained by the hypothesis of fluid motion in the form of a solid jet that was introduced into the model. 
In this case, in contrast to the pseudohomogeneous model, shortening of the gas-phase segment can ensure 
stability, because the time lag between the variation in the outlet gas flow rate and the variation in the inlet 
liquid flow rate, which is necessary for the occurrence of oscillations decreases. In the pseudohomogeneous 
model, such a lag is provided by the two-phase segment itself. 
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